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NOTE

2N-Storage Low Dissipation and Dispersion
Runge-Kutta Schemes for Computational
Acoustics

1. INTRODUCTION

For physical problems that involve accurate time-dependent wave propagation, as |
arising in acoustics, the usual requirement of a high-order truncation error does not guar
that a numerical method yields accurate results. Indeed, as has been pointed out mai
[1], the dissipation and dispersion properties of the numerical method are very impor
for computing wave solutions of systems of partial differential equations. This is va
for both the spatial and the time discretization methods. The explicit Runge-Kutta (F
methods are widely used to discretize the time derivative because of their advantage:
include flexibility, large stability limits, and ease of programming. Hu and co-workers |
showed that the dissipation and dispersion properties of the RK methods depend on
coefficients and optimized them for the convective wave equation, obtaining what t
called low-dissipation and dispersion Runge-Kutta (LDDRK) methods. These methods
more efficient than classical ones, in terms of work required for a given accuracy, for w
propagation problems.

For large size physical problems, memory requirements may become exhaustive.
can be decreased using special RK schemes that can be written such thatl esityr@ge
is required, wherdl is the number of degrees of freedom of the system (i.e., number of g
pointsx number of variables). To design such RK schemes, enough free coefficients r
exist such that additional conditions hold between them. Williamson [3] first showed t
all second-order and some third-order methods can be writteN iat@rage form. He also
showed that fourth-order four-stage methods cannot be written in this way. By allow
additional stages and using the resulting new free coefficients to imposéNtistofage
constraints, Carpenter and Kennedy [4] devised a fourth-order, five-stages RK methoc
is compatible with the classical fourth-order method which however requires at last
storage.

Hu et al. [2] provide N-storage implementations of the LDDRK schemes. These ¢
valid for linear problems only, in the sense that they turn to second order accuracy w
applied to nonlinear problems. Since most LDDRK schemes have a humber of stage:
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exceeds their order of accuracy, they can in principle be writtemNirs®rage format. The

goal of this paper is to devise such implementations. The methods presented here are
for nonlinear problems, since the explicit imposition of the order conditions guarant
their formal order of accuracy in the general nonlinear case. They do not, however, prc
means for monitoring the error since this introduces additional constraints and hence r
require additional stages. The required conditions for the coefficients, arising from
order of accuracy, low-storage and low-dissipation/dispersion constraints are develc
They lead to nonlinear systems of equations that are solved numerically. For each sche
full set of coefficients is provided, chosen among the multiple solutions available. Sev
numerical results obtained with the proposed and other available RK methods end the

2. GENERAL THEORY

Since wave-propagation problems normally have time-dependent boundary condit
we consider the general case of a non-autonomous system of ordinary differential eque
of the form

du
gt = FEUm: Ul =Uo @

The general form of an explicipth order of accuracg-stages RK method for computing
the numerical approximatiou to U (t" =t"~! 4 h) is

S
u"=u""+h> bk
A @)
i—1
k = F(t“—1+hq,u“—l+hza,—kj>,

j=1

wherec; _Z' la i=1..
For the scheme |n Eq. (2) to have the required order of accuracy, the coefficients |

obey certain order conditions [5]. These are obtained by equating coefficients of the Te
series development bf. The explicit form of these conditions up to fourth order of accurac
is

1
> b= 3= -
(0D ) bi=1 (04) > bict = A
1 1
(02) E bici = > (04 E biciajcj = 5 "
1 1
(03) ) bicf =3, (04) Y bayct = 5
1
(03) ) bajcj =7, (04 ) bajac =,

In these relations sums on all indices extend from & tin the left side of each condition
we have indicated the order of accuracy that it governs.

To obtain low-storage schemes, the idea is to leave useful information in the storage
tions, by writing each successive stage on the same register without zeroing the previ
held values. The algorithm becomes (withih an approximation talU/dt),

wi = ajwi—1 +hF_1, Uil)} o
, i=1...,s
Ui = Ui—1 + Biwi

(4)
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with a1 = O forthe algorithm to be self-starting. Herg= u"*, u" = us, andt; =t"! + hg.
Since only thew andu values must be stored for each degree of freedom, this results i
2N-storage algorithm.

Using Egs. (2) and (4), one can express the usual RK coeffi@gnts in terms ofw;, §;.
Since these relations depend on the number of stadkey will be presented in detail in
the next sections. One can then, in principle, solve the order conditions in terms &f the
storage constants, and obtain valid low-storage RK schemeg EoB, s = 3 (classical
3rd order RK schemes), it can be seen that there are 5 such consgants 61, 82, 83) and
four order conditions to be satisfied. It seems hence plausible, and this has been confirrr
Williamson [3], that such schemes exist. Fpe= 4, s = 4 there are eight order conditions
and only seven free coefficients, and as has also been shown in [3], there are no
schemes.

The dissipation/dispersion and stability properties of the RK methods are closely rele
hence they will be discussed together. To this end, we consider the model eqliafidn
=qU, U (0) =1, withq a possibly complex constant [5]. Using Eqg. (2), it can be found th
the amplification factor of a RK method is given by

n

u
(@)= 5= 1+zb (I +zA+Z2A% + - + 21 ASHE, (5)

wherez=qh, A=[a;]witha; =0forj >i,b=[by, by, ...,bs]",andE=[1,1,...,1]".
Since we will use the expression fofz) in order to build LDDRK schemes, we prefer to
write it as

r2=1+nz+- -+ 2, (6)

where the explicit form of the coefficients for methods having up to six stages is

V1=Zbi, V4=Zbiaijajkck
szzbici’ Vszzbiaijajkaklcl (7)
y3 = Z biajjcj, Ve = Zbiaijajkaklalmcm-

Note that some of the sums in (7) also appear in the order conditions. The method
be stable for all values af such thatjr (z)| < 1. If s= p, which is possible [5] only for
p <4, all coefficientsy; are determined by the order conditions. That is why all classic
RK methods have the same stability region.

Since the exact amplification factorrigz) = €*, expressing the ratio

r — peid
re(2)

®

gives the dissipation error-lp and the phase (dispersion) ero©ne can then optimize the
dissipation and dispersion errors, since they become functions of only the RK coeffici
andz. To this end, Hu [2], for example, constricted the coefficientsuch that the integral
foz Ir () — re(2)|? dzbe a minimum (withZ the limit of the optimization range), while still
maintaining a certain order of accuracy. This leads to optimal values for the coeffigient
that are not determined by the order conditions. The schemes considered in [2] for w
we search thel9-storage format are as follows:
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(1) Second-order, five stage scheme (LDD25) with= 0.166558,y4 = 0.0395041
andys =0.00781071.

(2) Fourth-order, six stage scheme (LDD46) with=0.0078105,/s = 0.00132141

(3) Two-step fourth-order method (LDD56) for which the first step is a five-sta
scheme withs = 0.0036105 and the second stepis a six-stage schemepyih0.0121101
andys =0.00285919

3. FIVE-STAGE SCHEMES

In this case the relationships between the usual andhst@rage RK coefficients are
found to be

a1 = B, as3 = (4354 + B3

azz = B, asp = a3as3 + B2

ag1 = apdsy + P, as1 = azas52 + B1

au3 = B3, bs = Bs Q)
ayp = azdys + P2, by = asbs + B4

ay1 = axdyr + P, b3 = asbs + B3

ass = Pa, by = azbz + B>

b1 = azly + By

To obtain the second-order five-stage LDDRK method, the above relations are use
express the two order conditions that must be obeyed and the three additional const
obtained by specifyings, ys, s in terms ofay, ..., a5 and By, ..., Bs. This leads to a
nonlinear system of five equations with nine unknowns, hence a four-parameter famil
solutions will probably exist. To choose a solution one may, for example, impose the va
for several variables and/or use additional equations. A solution thus obtained is pres
below.

I o B C

1 0.0 0.1 0.0

2 —0.6913065 0.75 0.1

3 —2.655155 0.7 0.3315201
4 —0.8147688 0.479313 0.4577796
5 —0.6686587 0.310392 0.8666528

4. SIX-STAGE SCHEMES
For six-stage schemes, the coefficieats, ..., asq4, by, ..., by are still given by the

relations in Eq. (9). The remaining coefficients are

ap5 = Ps, Ap2 = 0333 + B2
Ap4 = o535 + P4, Ap1 = a2as2 + 1 (10)
Ag3 = (4864 + P3, bs = Bs
bs = aghes + Bs.
There are now eleven free coefficients . .., ag, B1, ..., Bs. TO oObtain the fourth order

six stages LDDRK scheme the coefficients must obey the eight order conditions Eq. (3]
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the additional optimization constraints resulting from specificatiops0§55. The resulting
nonlinear system has been solved upon imposing the value of one of the coefficients.
such solution is listed below.

i o B c

0.0 0.1453095 0.0
—0.4919575  0.4653797  0.1453095
—0.8946264  0.4675397  0.3817422
—1.5526678  0.7795279  0.6367813
—3.4077973  0.3574327  0.7560744
—1.0742640 0.15 0.9271047

OO, WN B

5. TWO-STEP SCHEMES

The two-step LDD56 scheme devised in [2] can be pufNn2orage format. The scheme
has fourth order accuracy in both steps, and five/six stages in the first/second step. F
first step, the five stages imply nine free coefficients which are completely determinet
the eight order conditions and the additional constrgért 0.0036105. The second step
is completely similar to LDD46, except for the values of the constgntndys. We give
here one set of coefficients for the first and second step, respectively.

i o B c

1 0.0 0.2687454 0.0

2 -0.6051226  0.8014706  0.2687454
3  —2.0437564  0.5051570 0.5852280
4  —-0.7406999 0.5623568 0.6827066
5 —4.4231765  0.0590065 1.1646854
i o B C

1 0.0 0.1158488 0.0

2 —0.4412737 0.3728769  0.1158485
3 —1.0739820 0.7379536  0.3241850
4 —-1.7063570 0.5798110 0.6193208
5 —2.7979293 1.0312849  0.8034472
6  —4.0913537 0.15 0.9184166

6. NUMERICAL RESULTS

In order to check the accuracy of the proposed methods, we use a system of nonl
and non-autonomous first order differential equations
1 vé 1 . 2
U=————t; V== —é —2te 11
U t2 \Y (11)
together with the initial conditiond (1) = 1, V(1) = e~*. The exact solution of this system
isU(t) =1/t, V() = et The system is solved numerically in double precision over tt
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TABLE 1
Error Norms and Their Ratios for Various Step Sizes
for the Nonlinear System (11)

h LDD46 R LDD56 R LDD25 R

le-2 5.16e-8 17.8 4.31e-8 15.7 6.29e-7 5.9

5e-3 2.89%-9 16.9 2.74e-9 159 1.05e-7 5.2
2.5e-3 1.7e-10 16.5 1.73e-10 16.0 2.0le-8 4.7
1.25e-3  1.04e-11 1.08e-11 4.29e-9

ranget € [1, 1.4] using several step sizbsIn the limith — oo a decrease df by a factor
of two should decrease the error by a fad®e 16 for a fourth order method, arljRl = 4
for a second order method. The global error norms (computéd asu| + |V — v]) at
t =1.4 and their ratios, listed in Table 1, clearly show that LDD46 and LDD56 are foul
order accurate for nonlinear systems, while LDD25 is second order accurate.

Next, we use the schemes developed above to solve the convective wave equatio
which they have been optimized,

ou ou
420 12
ot + aX (12)

with initial conditionsU (t =0) = 0.5e~**/°, The domain extends from= —50 tox = 450,
and the spatial discretization is obtained using eighth order central differenceawith.
In a first case the time step for all schemes has been chosen close to the stability lin
the fourth order six stage scheme (for stability and accuracy limits see [2]). For the se
case, the time step is larger than the stability limit of LDD46 and close to the stabi
limit of LDD56. The maximum norm of the errdr,, = max|u—U| at timet =400 for the
2N-storage schemes devised above is given in Table 2. Also given is the error for the fo
order N-storage scheme developed by Carpenter (CAR) [4] and the classical fourth-o
four-stages RK (RK4) method which needs at led$sBorage. It turns out that fér< 1.54
the error for LDD56 is governed by the spatial discretization, no further decrease of
error being possible upon decreasimdrigure 1 presents graphically the results for the fir:
case (RK4 not shown), with the exact solution sampled at the same data points.
Different ways can be used to compare the relative efficiency of the methods. Am
them, RK4 can be considered the most efficient if accuracy is not a concern, since it n
the smallest number of function evaluations to relaet400. When one compares the work
needed to obtain a certain accuracy, however, the comparison favors the optimized met

TABLE 2
L. Error Norms for the Advection Equation

Method h=1.263 h = 1543
RK4 1.05e-1 l.4le-1
CAR 8.12e-2 1.0le-1

LDD25 3.77e-2 5.08e-2

LDD46 2.80e-2 -

LDD56 2.43e-2 2.44e-2
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FIG. 1. Results obtained with/2-storage Runge-Kutta schemes for the linear advection equation. (a) Car
nter's 5-stage scheme, (b) LDD 2nd order 5 stage scheme, (c) LDD 4th order 6 stage scheme, (d) LDD twc
scheme.

Foran error nornh ,, = 2.8e-2, for example, where one is limited by the stability of LDD46
LDD25 needs a total of 2070 function evaluations (414 steps), LDD46 1914, CAR 3!
and RK4 3600, while the error for LDD56 at its stability limit where 1430 stages are nee
is lower than the asked-for value. Considering the work required by RK4 as a refere
it follows that LDD25 is 1.74 times, LDD46 1.88 times, and LDD56 at least 2.52 timi
more efficient for this problem. The situation is slightly different when using-thaorm

V1I/N Y (Ui — Uj)?, this time LDD25 becoming more efficient than LDD46. Again for ¢
value at the stability limit of RK 46|, = 3.4e-3, one needs 1331 stages with LDD56, 167
stages with LDD25, 1896 stages with LDD46, 2640 stages with RK4, and 2680 stages
CAR. The advantage of using optimized methods for wave-dominated problems is obvi
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